Mar 23,2010 UAB BMG744

1

## The best proteomics: combination of good gels, addressing quality control, and mining the data

Helen Kim, Ph.D.

Dept of Pharmacology & Toxicology University of Alabama at Birmingham <u>helenkim@uab.edu</u> 205-934-3880

HelenKim/UAB/PharmTox



Our principal goal: to understand the molecular basis of human chronic conditions/diseases, to develop prevention or therapies.

Strategy: <u>a proteomics approach</u>

Hypothesis: Actions of "beneficial" agents such as dietary anti-oxidants in normal and disease tissue will reveal subproteomes of proteins "at risk" for disease-relevant changes.

HelenKim/UAB/PharmTox

3

<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>



















## Database of protein differences in GSE vs CT brains

|                                             | #matched | Accession  | MOWSE     | Obs            | Pred           | Obs        | Pred | Nature of                                 |
|---------------------------------------------|----------|------------|-----------|----------------|----------------|------------|------|-------------------------------------------|
|                                             | рер      | #          |           | m.w.           | m.w.           | pl         | pl   | change in<br>GSE brains                   |
| Mitochondrial matrix<br>proteinprecursorP60 | 10       | P19227     | *1.26E+04 | 64900          | 60956          | 5.6        | 5.9  | +1.5                                      |
| Creatine Kinase BB<br>chain                 | 12       | P07335     | *1.66E+05 | 45600          | 42712          | 5.45       | 5.3  | +1.52<br>Translocation<br>to<br>Acidic pH |
| Actin                                       | 8        | P10365     | *2.18E+05 | 42000          | 41636          | 5.3        | 5.4  | Less complex                              |
| GFAP                                        | 20       | P47819     | *9.67E+09 | 49000          | 49943          | 5.4        | 5.3  | - 1.6                                     |
| 14-3-3 epsilon                              | 10       | P42655     | *1.41E+09 | 31900          | 29174          | 4.49       | 4.6  | - 2.1                                     |
| Alpha Enolase                               | 9        | P04764     | *6.64E+05 | 46000          | 46985          | 6.0        | 6.2  | Less complex                              |
| Gamma Enolase                               | 10       | P07323     | 95        | 47000          | 47111          | 5.12       | 5.03 | Less complex                              |
| RIKEN cDNA<br>(NM 025994)                   | 9        | NP080270   | 169<br>95 | 26000<br>26000 | 25084<br>25084 | 5.0<br>5.1 | 5.0  | -1.56                                     |
| HSC-70                                      | 12       | gi4103877  | 110       | 70321          | 42455          | 5.9        | 6.64 | +1.63                                     |
| HSC-71                                      | 16       | gi123644   | 105       | 70386          | 71195          | 5.43       | 5.49 | +1.91                                     |
| Neurof ilament L<br>Tripl et protein        | 14       | gi13929098 | 120       | 61025          | 61298          | 4.61       | 4.63 | +1.63                                     |
| Neurofilament M                             | 19       | gi8393823  | 153       | 95086          | 95591          | 4.75       | 4.76 | +1.73                                     |
| triplet protein                             |          |            |           |                |                |            | =    |                                           |





## Validation of protein identifications and quantitations

| Protein   | LC-MS/MS | Western blot |
|-----------|----------|--------------|
| CK-BB     | +        | +            |
| Hsp60     | +        | +            |
| GFAP      |          |              |
| Actin     |          | +            |
| NFL-M     | +        |              |
| α-enolase | +        |              |
| γ-enolase | +        |              |
| Hsc70     |          |              |
| Hsc71     |          |              |
| 14-3-3e   |          | +            |
| NFL-L     |          | +            |

(Kim et al., 2005, in Luo and Packer, Oxidative Stress & Neurodegeneration)

17

HelenKim/UAB/PharmTox

<section-header><section-header><image><image><image>

























